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Abstract
We explore the transition from order to chaos for the Bohmian trajectories of a
simple quantum system corresponding to the superposition of three stationary
states in a 2D harmonic well with incommensurable frequencies. We study
in particular the role of nodal points in the transition to chaos. Our main
findings are (a) a proof of the existence of bounded domains in configuration
space which are devoid of nodal points, (b) an analytical construction of formal
series representing regular orbits in the central domain as well as a numerical
investigation of its limits of applicability, (c) a detailed exploration of the
phase-space structure near the nodal point. In this exploration we use an
adiabatic approximation and we draw the flow chart in a moving frame of
reference centered at the nodal point. We demonstrate the existence of a saddle
point (called X-point) in the vicinity of the nodal point which plays a key
role in the manifestation of exponential sensitivity of the orbits. One of the
invariant manifolds of the X-point continues as a spiral terminating at the nodal
point. We find cases of Hopf bifurcation at the nodal point and explore the
associated phase space structure of the nodal point—X-point complex. We
finally demonstrate the mechanism by which this complex generates chaos.
Numerical examples of this mechanism are given for particular chaotic orbits,
and a comparison is made with previous related works in the literature.

PACS numbers: 05.45.Mt, 03.65.Ta

1. Introduction

The formulation of quantum mechanics based on Bohm’s trajectories (de Broglie 1926,
Bohm 1952a, 1952b) has attracted considerable interest in recent years because it offers a
powerful tool to visualize quantum processes in terms of quantum orbits. According to the
Bohmian interpretation (see, Bohm and Hiley (1993) and Holland (1993) for reviews) the
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particles are guided by the Schrödinger field via deterministic equations of motion. In
this approach the moving particles, together with the Schrödinger field, form the basic
ingredients of objective reality at the quantum level. On the other hand, in orthodox quantum
mechanics the orbits do not refer to deterministic particles’ motions, but they represent the
streamlines of the probability current j = (ψ∗∇ψ − ψ∇ψ∗)/2i (we set h̄ = 1). Thus they
represent a ‘Lagrangian’ (Holland 2005) or ‘hydrodynamical’ (Madelung 1926) description of
the quantum probability flow, while the Schrödinger equation yields the Eulerian description
of the same flow. At any rate, the descriptive power of the Bohmian approach is independent
of its ontological interpretation. In fact, applications of Bohm’s trajectories in the literature
have so far successfully addressed such basic quantum processes as the two-slit experiment
(Philippidis et al 1979), the spin measurement via Stern-Gerlach devices (Dewdney et al 1986),
tunneling through potential barriers (Hirschfelder et al 1974, Skodje et al 1989, Lopreore and
Wyatt 1999), ballistic electron transport (Beenakker and van Houten 1991), superconductivity
(Feynman Lectures, Feynman et al (1963)), etc (see, Wyatt (2005) for a review of applications
of quantum dynamics with trajectories).

In the present paper we focus on one particular aspect of Bohm’s theory that refers to
the distinction of the Bohmian trajectories into regular and chaotic. A number of studies
in the literature (e.g., Dürr et al (1992), Faisal and Schwengelbeck (1995), Parmenter and
Valentine (1995), de Polavieja (1996), Dewdney and Malik (1996), Iacomelli and Pettini
(1996), Frisk (1997), Konkel and Makowski (1998), Wu and Sprung (1999), Makowski et al
(2000), Cushing (2000), Falsaperla and Fonte (2003), de Sales and Florencio (2003), Wisniacki
and Pujals (2005), Valentini and Westman (2005), Efthymiopoulos and Contopoulos (2006))
have so far converged to the conclusion that generic quantum systems of more than one degrees
of freedom are characterized by the coexistence, in the configuration space, of both regular
and chaotic orbits. Some established results regarding this distinction are the following.

(a) The regular or chaotic character of the quantum mechanical orbits does not necessarily
correlate with the character of the classical orbits of the same system, i.e., there are
examples of systems with classically regular and quantum mechanically chaotic orbits,
or vice versa (see, Efthymiopoulos and Contopoulos (2006) for a review).

(b) The emergence of chaos is associated with the existence of ‘nodal points’ in the
configuration space, i.e., points of the configuration space at which the Schrödinger field
becomes null. In some particular examples it has been possible to identify a mechanism
by which the approach of an orbit near a nodal point introduces chaos (Makowski et al
2000, Wisniaski and Pujals 2005). However the general problem of the mechanism of
transition from order to chaos for the Bohmian orbits is still largely unexplored.

(c) In some cases it has been shown that the extent of chaos is related to the number and
spatial distribution of the nodal points in the configuration space (Frisk 1997, Wisniacki
et al 2006). However, in other cases we find the manifestation of strong chaos even if
only one nodal point is present. This problem is important because it has been shown
that, when the degree of chaos is large, it is possible to obtain an asymptotic convergence
of the distribution p of an ensemble of Bohmian trajectories to Born’s rule p = |ψ |2, via
a Bohm–Vigier (Bohm and Vigier 1954) stochastic mechanism (Valentini and Westman
2005, Efthymiopoulos and Contopoulos 2006), without having to postulate this rule.

Our purpose in the present paper is to study how the transition from regular to chaotic
motion takes place by considering the orbits of a very simple quantum system, namely the
superposition of three eigenstates in a Hamiltonian system of two independent harmonic
oscillators. Parmenter and Valentine (1995,1996) demonstrated that when the two oscillator
frequencies are incommensurable, the configuration space is filled by both regular and chaotic
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orbits (the initial claim that all the orbits were chaotic (Parmenter and Valentine 1995)
was corrected by Parmenter and Valentine (1996), and by Efthymiopoulos and Contopoulos
(2006)). The same coexistence was found by Wisniacki and Pujals (2005) when the frequencies
are commensurable but the amplitudes of the superposed eigenfunctions have a complex ratio,
and by Konkel and Makowski (1998) in the case of a particle in a box with infinite walls. In
the above cases there is only one nodal point which influences the orbits and introduces chaos.
Our aim below is, then, to study the transition from order to chaos from two different points
of view: (a) topologically, i.e. we seek to distinguish which domains of initial conditions lead
to regular or chaotic motion and what theoretical criteria can be devised in order to separate
these domains, and (b) dynamically, i.e., we seek to identify the dynamical mechanism behind
the transition from order to chaos.

The following is an outline of the paper and of the main results:

(a) Section 2 contains a proof of the existence of domains in configuration space where nodal
points cannot appear. In our considered example the size of these domains depends on
the relative amplitudes of the three eigenfunctions and specific quantitative estimates of
this dependence are given, which are compared to numerical results.

(b) In their domain of analyticity (i.e., far from nodal points), the equations of motion admit
solutions expandable in series of a properly defined small parameter (section 3). The
series’ terms can be determined by an iterative algorithm. The resulting solutions define
theoretical orbits which are, by definition, regular. The theoretical orbits explain all the
basic characteristics of the regular orbits as found by numerical integration. In particular
they explain the frequencies, the form, the limits and the inner deflections of regular
orbits.

(c) Section 4 passes to the other limit, of motion, close to the nodal points. In order to unravel
the mechanism by which the orbits approaching the nodal point become chaotic, the key
point is to take into account the motion of the nodal point itself by passing to a description
of the orbits in a moving frame of reference centered at the (moving) nodal point. The
main characteristics of the orbits in this frame are found by expansions of the equations of
motion in terms of a new small parameter, i.e., the distance R = ε from the nodal point.
The angular frequency of motion near the nodal point is of order O(1/ε2), a fact allowing
us to use an adiabatic approximation. In this approximation, the flow lines near the nodal
point are spirals terminating at the nodal point. However, the flow further away from the
nodal point is quite complicated and it is studied in detail. In particular, we demonstrate
how this flow is related to the manifestation of chaos in the system. The main results are
derived theoretically and then substantiated by detailed numerical experiments.

(d) Finally, we discuss (section 5) how do our results compare with previous works in the
literature on nodal points, and we end with the conclusions (section 6).

2. Limits of nodal lines

We study the quantum orbits in the Hamiltonian model of two uncoupled oscillators:

H = 1
2

(
p2

x + p2
y

)
+ 1

2 (x2 + (cy)2) (1)

when the guiding field is the superposition of three stationary states (Parmenter and Valentine
1995):

ψ(x, y, t) = e− x2+cy2

2 −i (1+c)t

2 (1 + ax e−it + bc1/2xy e−i(1+c)t ). (2)
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(a) (b)

Figure 1. Nodal lines given by equations (6) for a = 1, b = 1, 0 � t � 1000 and (a) c = 7/10,
(b) c = √

2/2.

The equations of motion (de Broglie 1926, Bohm 1952a) are

(ẋ, ẏ) ≡ Im

( �∇ψ

ψ

)
(3)

where Im denotes the imaginary part of each of the components of the vector �∇ψ/ψ , or

dx

dt
= −a sin t + bc1/2y sin(1 + c)t

G

dy

dt
= −bc1/2x(ax sin ct + sin(1 + c)t)

G

(4)

with

G = 1 + 2ax cos t + 2bc1/2xy cos(1 + c)t + a2x2 + 2abc1/2x2y cos ct + b2cx2y2. (5)

The equations of motion (4) become singular whenever G = 0. From (5) we then find the
equations of the nodal points:

x0 = − sin(1 + c)t

a sin ct
, y0 = − a sin t

bc1/2 sin(1 + c)t
. (6)

When the frequency c is a rational number, the nodal points describe periodic motions in the
configuration space (x, y), along a finite number of nodal lines (figure 1(a)). However, when
c is irrational there is an infinite number of nodal lines that fill open domains of the space
(x, y) (figure 1(b)). As shown in section 3, a theoretical approximation of the regular orbits
can be obtained in the complement of the domain of nodal lines. We thus first provide, in this
section, rigorous bounds for the domain of nodal lines. In particular, we prove the following
proposition: when the relative amplitudes a, b are non-zero, the domain of nodal lines is
bounded by a set of limiting hyperbolae.

To this end, we write x0 = −X0/a and y0 = −aY0/bc1/2, where

X0 = sin(1 + c)t

sin ct
, Y0 = sin t

sin(1 + c)t
. (7)

We make use of the following lemma:

(i) ∀u ∈ R with 0 � u � π/2, ∃δ > 0 with
2

π
� δ � 1 : sin u = δu

(ii) ∀u ∈ R with 0 � u � π, sin u � u.

(8)
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In order to find the bounds of (|X0|, |Y0|) we consider all the 4×4 = 16 possible combinations
of the trigonometric arguments t, (1+c)t being in any of the four quartiles of the trigonometric
circle, i.e.,

(1 + c)t = 2k1π ± t1, or (1 + c)t = (2k1 + 1)π ± t1

t = 2k2π ± t2, or t = (2k2 + 1)π ± t2
(9)

with (k1, k2) ∈ Z2 and 0 � t1 � π/2, 0 � t2 � π/2. Taking now ct = (1 + c)t − t we find
the following possibilities for |sin(ct)|:

|sin(ct)| = |sin(t1 ± t2)|. (10)

We then distinguish four cases, namely cases A,B with |sin ct | = |sin(t1 − t2)|, and cases C,D
with |sin ct | = |sin(t1 + t2)|.
Case A: t1 > t2 (and |sin(ct)| = sin(t1 − t2)). Since t1 − t2 � π/2, according to lemma (8)(i)

∃ δi > 0, i = 1, 2, 3 :
2

π
� δi � 1 such that

|sin(1 + c)t | = δ1t1, |sin t | = δ2t2, |sin ct | = sin(t1 − t2) = δ3(t1 − t2)

or

|X0| = δ1t1

δ3(t1 − t2)
, |Y0| = δ2t2

δ1t1
. (11)

From (11) then follows the inequality

1
π
2 − |Y0| � |X0| � 1

2
π

− |Y0|
, (12)

which is shown graphically in figure 2(a). When |Y0| = 0, |X0| is between 2/π and π/2.

Case B: t2 > t1 (and |sin(ct)| = sin(t2 − t1)). Working in the same way as for case A we find
the inequality

1
π
2 |Y0| − 1

� |X0| � 1
2
π
|Y0| − 1

(13)

shown graphically in figure 2(b). When |X0| → ∞, |Y0| is between 2/π and π/2 (dashed
asymptotic curves in figure 2(b)).

Case C: t1 + t2 � π/2 (and |sin(ct)| = sin(t1 + t2)). In this case we find that

∃ δi > 0, i = 1, 2, 3 :
2

π
� δi � 1 such that

|sin(1 + c)t | = δ1t1, |sin t | = δ2t2, |sin ct | = sin(t1 + t2) = δ3(t1 + t2)

or
2

π(|Y0| + 1)
� |X0| � π

2(|Y0| + 1)
(14)

(figure 2(c)). When |Y0| = 0, |X0| is between 2/π and π/2.

Case D: t1 + t2 > π/2 (and |sin(ct)| = sin(t1 + t2)). In this case

∃ δi > 0, i = 1, 2, 3 :
2

π
� δi � 1 such that

|sin(1 + c)t | = δ1t1, |sin t | = δ2t2, |sin ct | = sin(t1 + t2)

= sin(π − (t1 + t2)) = δ3(π − t1 − t2)
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(a) (b)

(c) (d )

(e)

Figure 2. The limits of nodal lines as determined by (a) equation (12), (b) equation (13),
(c) equation (14), (d ) equations (15) and (16). (e) The nodal lines given by equation (6) for
a = 1, b = 1, c = √

2/2, 0 � t � 1000, superposed to the less restrictive of all the limits shown
in panels (a)–(d ).

implying
2

π
(

π
2 |Y0| + 1

) � |X0| � 1
2
π

− |Y0|
. (15)
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Furthermore, if t1 � π/4 (case D1) we have t2 � π/4 and π − (t1 + t2) � π/4. Equations (7)
and (9) imply that |X0| � 1 and |Y0| � 1. On the other hand, if t1 > π/4 (case D2) we have

|Y0| = sin t

δ1t1
<

1

δ1
π
4

< 2.

The union of the two possibilities yields

|X0| � 1 or |Y0| � 2. (16)

Inequalities (15) and (16) are shown graphically in figure 2(d ). When |Y0| = 0, |X0| is
between 2/π and π/2.

The less restrictive of all bounds determine the permissible domain for nodal points. The
outer limit (13) of case B is less restrictive than the limit |X0| of case D if 1

/(
2
π
|Y0| − 1

)
< 1,

i.e. if |Y0| < π (in the exceptional case that |Y0| > π the limit |X0| = 1 is less restrictive than
the limit of case B). Figure 2(e) shows the analytical estimates for the bounds of the nodal lines
compared to the numerical determination of the nodal lines in the variables (x0, y0) for the
parameters a = b = 1, c = √

2/2. The further restrictions of the cases A–D are also satisfied
if t1 and t2 take the values specified in these particular cases. The main conclusion is that there
is a central domain, with boundary defined by the innermost arcs of limiting hyperbolae, that
is never crossed by nodal points. There is also an outer domain, at large distances from the
center, which is again prohibited to nodal points. By calculating many orbits, our numerical
evidence is that the orbits lying within these domains are regular. In particular, we now turn
our attention to the analytical determination of the regular orbits for the central domain free
of nodal points.

3. Integrals of motion and the bounds of regular orbits

According to the analysis of the previous section, a lower bound for the distance of a
nodal point (x0, y0) from the origin (0, 0) is given by dmin = (

x2
0,min + y2

0,min

)1/2
, with

(x0 = X0,min/a, y0 = aY0,min/bc1/2), and X0,min, Y0,min corresponding to the closest approach
of the innermost limiting hyperbola (equation (15)) to the origin, i.e.

π4X4
0,min

16
+

πX0,min

2
− 1 = 0, Y0,min = 2

π

(
2

πX0,min
− 1

)

or X0,min = 0.461 226, Y0,min = 0.242 092. When a and b are large, the distance dmin is
small and the inner domain free of nodal points is small. On the other hand, in the limit
a → 0, b → 0 we have dmin → ∞ and the whole space is free of nodal points. This implies
that if we look for analytic solutions of the equations of motion (4), i.e., free of singularities in
the neighborhood of the origin, we may consider a, b in equation (5) as small parameters, and
expand 1/G in equation (4) in a power series of these parameters. This results in solutions

x(t) = x0 + x1(t) + x2(t) + · · · , y(t) = y0 + y1(t) + y2(t) + · · · , (17)

where the functions xn(t), yn(t) are of order n in the amplitudes a or b. The convergence
of these series, which are of the form of the ‘third integral’ (Contopoulos 1960), is an open
problem. However, our numerical evidence below is that the form of theoretical orbits derived
by these series fits well the form of the numerical orbits for small parameters a, b.

In the zeroth order approximation all the solutions are equilibria x(t) = x0, y(t) = y0.
This corresponds to the limit a = b = 0, in which the guiding ψ-field is a bound stationary
state, and all the quantum orbits are neutral equilibria. On the other hand, when higher order
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terms are taken into account, equations (17) can be inverted, and, provided that the series
converge, they yield the integrals of motion

x − x1(t) − x2(t) − · · · = x0, y − y1(t) − y2(t) − · · · = y0 (18)

implying that the resulting orbits are, by definition, regular.
The solutions (17) are found recursively, i.e., order by order, giving xk, yk as explicit

trigonometric expressions in t, with two basic frequencies ν1 = 1 and ν2 = c.
The first order equations read

dx1

dt
= −a sin t − bc1/2y0 sin((1 + c)t),

dy1

dt
= −bc1/2x0 sin((1 + c)t) (19)

and they can be readily integrated yielding

x1(t) = A1 + a cos t + bc1/2y0
cos((1 + c)t)

1 + c
y1(t) = B1 + bc1/2x0

cos((1 + c)t)

1 + c
(20)

where A1, B1 are integration constants. Since we wish to absorb the whole dependence of
the solution on the initial conditions in the x0, y0 part of the solution, we select the values of
A1, B1 such that x1(0) = y1(0) = 0.

In a similar way we treat the second order equations, finding the solutions

x2(t) = −a2x0

2
cos(2t) − b2cx0

(1 + c)2
cos((1 + c)t) − b2cx0

2(1 + c)

(
y2

0 − 1

2(1 + c)

)
cos(2(1 + c)t)

− 2abc1/2x0y0

2 + c
cos((2 + c)t) + A2 (21)

and

y2(t) = −
(

abc1/2

1 + c
+

b2cy0

(1 + c)2

)
cos((1 + c)t) − b2cy0

2(1 + c)

(
x2

0 − 1

2(1 + c)

)
cos(2(1 + c)t)

+
ab

2c1/2
cos(ct) − abc1/2

2 + c

(
x2

0 − 1

2

)
cos((2 + c)t) + B2 (22)

respectively. The integration constants A2, B2 are also given values such that x2(0) =
y2(0) = 0.

We can prove the consistency of the above construction, i.e., that no secular terms can
appear in the above recursive scheme. The proof follows by induction: if the solutions
xi(t), yi(t), i = 1, . . . , n contain only cosine terms (of the form cos((m1 +m2c)t) with m1,m2

being integers, then, the expansion

1

G
= 1 +

n∑
k=1

(−1)k[2ax(n) cos t + 2bc1/2x(n)y(n) cos(1 + c)t

+ a2(x(n))2 + 2abc1/2(x(n))2y(n) cos ct + b2c(x(n))2(y(n))2]k + · · ·
with

x(n)(t) = x0(t) + x1(t) + · · · + xn(t), y(n)(t) = y0(t) + y1(t) + · · · + yn(t)

contains only powers of cosine terms, yielding again only cosine terms since cos w1 cos w2 =
(cos(w1 + w2) + cos(w1 −w2))/2. Thus, the equations of motion in order n + 1 yield only sine
terms, since 1/G in equations (4) is multiplied only by sine terms and sin w1 cos w2 = (sin(w1+
w2) + sin(w1 − w2))/2. If for some terms we have w1 = (m1 + m2c)t, w2 = (m′

1 + m′
2c)t ,

the sine terms produced in the equations of motion are sin(m1 + m′
1 + m2c + m′

2c)t , or
sin(m1 − m′

1 + m2c − m′
2c)t . If (m1 = ±m′

1 and m2 = ±m′
2), or, c is rational and equal to

c = −(m1 ±m′
1)/(m2 ±m′

2), one of the sine terms in the equation of motion becomes equal to



Nodal points and the transition from ordered to chaotic Bohmian trajectories 12953

(a) (b) (c)

Figure 3. Three orbits in the equations of motion (4) for a = b = 1, c = √
2/2 and 0 � t � 1000.

The initial conditions are (a) x(0) = 0.75, y(0) = 0.25 (regular, not overlapping with the domain
of nodal lines), (b) x(0) = y(0) = 1 (regular, partly overlapping with the domain of nodal lines),
and (c) x(0) = y(0) = 1.4 (chaotic).

zero (resonance). However, the resonances do not create any secular term in the solutions of
the equations since the associated terms simply disappear from the rhs of equations (4). Thus,
the equations in the next order give dxn+1/dt and dyn+1/dt as sums of sine terms, and it follows
that, if x(n) and y(n) are sums of cosine terms, xn+1 and yn+1 are also sums of cosine terms.
Thus, no secular terms appear in the solutions x(n), y(n),∀ n = 1, . . . ,∞ since x(1), y(1) are
sums of cosine terms.

The main characteristics of the regular orbits in the central region can be understood in
terms of the above equations. In particular,

(a) The regular orbits are quasi-periodic, i.e., they are given as double Fourier series with two
fundamental frequencies ν1, ν2, which have constant values ν1 = 1, ν2 = c. This fact is
important because it implies that there is no dependence of the frequencies of the orbits
on the amplitudes of the oscillations. This is different from what is usually encountered
in the case of classical nonlinear dynamical systems, in which the frequencies depend, in
general, on the amplitudes. In contrast, the quantum mechanical orbits in this system are
completely degenerate with respect to their fundamental frequencies.

(b) The amplitudes of all the trigonometric terms depend on a and b, but in many terms
they depend also on the initial conditions x0, y0. The former condition ensures that for
a, b sufficiently small a regular orbit does not overlap with the domain of nodal lines.
This is because the amplitudes of oscillations are O(a) and O(bc1/2) in the x and y

axes respectively (equations (20)), while the minimum distance of a nodal point from the
center is of order O(|1/a| + |1/b|) (section 2). Numerically we find such regular orbits
for a, b as high as a = b = 1 (figure 3(a)). However, the opposite is not true, namely an
orbit overlapping partly with the domain of nodal lines may still be regular (figure 3(b)).
In fact, we find numerically that while there is a spatial overlap of the domains of the
orbit and of the nodal lines, the time evolution of both the orbit and the nodal point is
such that their distance is always large (of order unity). Thus when an orbit enters some
region containing nodal lines the nodal point is far from this region. However, we also
find numerically that if an orbit has significant overlap with the domain of nodal lines, the
orbit is, in general, chaotic (figure 3(c)).

(c) In the lowest approximation, when x0 �= 0 the theoretical orbits are ‘box orbits’
(equations (20)) like in the classical case. However, when higher order terms are taken
into account, some box orbits develop deflections internal to the box, while other box
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(a) (b) (c)

(d ) (e) ( f )

Figure 4. (a) An orbit with a = b = 0.2, c = √
2/2 and initial conditions x(0) = 1, y(0) = 0.

(b) The theoretical approximation to the same orbit up to terms of second degree in a and b, given
by equations (23) and (24). (c) The time evolution of y(t) for the same orbit. The numerical and
theoretical curves almost coincide. (d ) Same as (a) but with initial conditions x(0) = y(0) = 0.
(e) Same as (b) but for the orbit (d ). ( f ) Same as (c) but for the orbit (d ); the secondary local
maxima of y(t) correspond to deflections of the orbit inside its ‘box’ limit.

orbits have deflections only at the boxes’ limits, depending on the value of x0, y0. A
simple example is provided by orbits starting on the axis y0 = 0. Then, the equations of
the orbits are simplified considerably. We have, up to second order,

x(t) = x0 + a[cos t − 1] − a2x0

2
[cos 2t − 1] − b2cx0

(1 + c)2
[cos((1 + c)t) − 1]

+
b2cx0

4(1 + c)2
[cos(2(1 + c)t) − 1] (23)

y(t) = bc
1
2 x0

1 + c
[cos((1 + c)t) − 1] − abc1/2

1 + c
[cos((1 + c)t) − 1]

+
ab

2c1/2
[cos(ct) − 1] − abc1/2

2 + c

(
x2

0 − 1

2

)
[cos((2 + c)t) − 1]. (24)

In equation (23) the first order term a[cos t − 1] depends only on a, yielding an oscillation of
amplitude 2a, while in equation (24), the first order term bc1/2x0[cos((1 + c)t) − 1]/(1 + c)

depends on both b and x0. For all initial conditions with |x0| = O(1), this term is dominant
over the second order terms in equation (24). Thus the orbit is a deformed parallelogram, i.e.,
it resembles to classical box orbits (figure 4(a)–(c)). On the other hand, if |x0| → 0, this term
becomes small, while the second order terms, not depending on x0, become now important.
This means that secondary oscillations of the function y(t) are developed, that may also yield
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(a) (b)

(c) (d )

Figure 5. Numerical versus theoretical orbits for a = b = 0.5, c = √
2/2. (a) Numerical

orbit with initial conditions x(0) = y(0) = 0. (b) The theoretical approximation of orbit (a)
with an expansion up to terms of 10th degree in a, b. (c) Numerical orbit with initial conditions
x(0) = 0.5, y(0) = 0. (d ) Same as in (b) but for the orbit (c).

local minima or maxima besides the main minimum or maximum defined by the first order
Fourier component of (24). This causes the orbit to develop deflections in the y-direction
inside the box. A numerical example of this behavior is demonstrated in figures 4(d )–( f ).

Figure 5 shows some further examples of theoretical orbits calculated by the above series,
via a computer program implementing the recursive algorithm up to the 10th order. As
expected in any kind of perturbative series, as a, b increase one needs higher order terms to
obtain a good approximation of the orbits. In fact, as already analyzed, the approximation
depends also on the values of the initial conditions x0, y0 which appear in the amplitudes of the
trigonometric terms of equations (20), (21) and (22). Thus, when x0 = y0 = 0, the theoretical
orbit for a = b = 0.5 (figures 5(a), (b)) fits well the numerical orbit, while if the series are
truncated at orders well below 10 the agreement is not so good. On the other hand for the
same amplitudes a, b the fit is not good when x0 = y0 = 0.5 (figures 5(c), (d )). Now, in
any perturbation theory the analytical results are precise up to values of the small parameters
smaller than the values for which regular orbits are found numerically. Thus, in our case we
find that for amplitudes larger than a = b = 0.75 the approximation of the numerical orbits
by series yields no longer accurate results, despite the fact that we still find numerically many
regular orbits.
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4. The dynamics close to nodal points and the transition to chaos

4.1. Phase space structure close to nodal points and the adiabatic approximation

Having demonstrated the existence of regular orbits far from the nodal points, we now examine
the motion in the other limit, i.e., close to a nodal point. Our main remark in what follows is
that the phenomena relevant to the transition to chaos are unraveled when one considers the
passage of the orbits in the neighborhood of the nodal point in a moving frame of reference
that is centered at the nodal point. Introducing u = x − x0, v = y − y0, the equations of
motion in the moving frame read

du

dt
= −bc1/2v sin(1 + c)t

G
− ẋ0

dv

dt
= bc1/2u sin(1 + c)t − abc1/2u2 sin ct

G
− ẏ0,

(25)

where G = G2 + G3 + G4 with

G2 = u2

x2
0

− 2bc1/2uv cos(1 + c)t + b2cx2
0v2

G3 = −2bc1/2

x0
u2v cos(1 + c)t + 2b2cx0uv2 (26)

G4 = b2cu2v2

and ẋ0, ẏ0 are found by differentiating x0, y0 with respect to time in (equation (6). We then
consider the distance R =

√
u2 + v2 ≡ ε of an orbit from the nodal point as a small parameter

and derive the main characteristics of the motion by taking expansions of the equations of
motion (25) in powers of ε, i.e., by considering both u and v as O(R) ≡ O(ε). In polar
coordinates u = R cos φ, v = R sin φ, the equations (25) read

dR

dt
= −abc1/2R2 cos2 φ sin φ sin ct

G
− ẋ0 cos φ − ẏ0 sin φ

dφ

dt
= bc1/2 sin(1 + c)t − abc1/2R cos3 φ sin ct

G
− 1

R
ẏ0 cos φ +

1

R
ẋ0 sin φ

(27)

where G = g2R
2 + g3R

3 + g4R
4 and g2, g3, g4 are readily specified from equation (26) (see

appendix for explicit formulae).
To the leading order (1/ε2), the second of equations (27) yields

dφ

dt
= bc1/2 sin(1 + c)t

R2
( cos2 φ

x2
0

− 2bc1/2 cos φ sin φ cos(1 + c)t + b2cx2
0 sin2 φ

) + · · · (28)

Thus, the angular velocity around the nodal point is large (of order O(1/ε2)) and the period
can be made arbitrarily small by approaching closer and closer to the nodal point. This fact
justifies the use of the adiabatic approximation in the study of the motions near the nodal
point. That is, at a given initial time t0 we set t = t0 + ε2t ′, with ε = R0 ≡ R(t0), and find

dφ

dt ′
= bc1/2 sin(1 + c)t0

cos2 φ

x2
0

− 2bc1/2 cos φ sin φ cos(1 + c)t0 + b2cx2
0 sin2 φ

+ O(ε2). (29)

Now, the denominator in the rhs of equation (29) is equal to the square of the length of one
diagonal of the parallelepiped with sides |cos φ/x0|, |bc1/2x0 sin φ| forming an angle (1 + c)t0,
thus it is always positive. It follows that dφ/dt ′ and dφ/dt have a unique sign during a whole
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period of φ, which is the same as the sign of sin((1 + c)t0. That is, at a given time t0, the
angular motions close to the nodal point are all described in the same sense.

In the same approximation we can now determine the form of the integral curves of the
velocity vector field (25). Dividing the first with the second of equations (27), and setting a
constant t0 in the place of t in the rhs yields the equation of the integral curves, which is of the
form:

dR

dφ
= A2(φ; t0, x0, ẋ0, ẏ0)R

2 + A3(φ; t0, x0, ẋ0, ẏ0)R
3 + · · ·

B0(φ; t0, x0, ẋ0, ẏ0) + B1(φ; t0, x0, ẋ0, ẏ0)R + · · · . (30)

The precise functions Ai, Bi are given in the appendix. At this point it suffices to state that
both functions contain only trigonometric terms in φ. If we expand equation (30) with respect
to R we find

dR

dφ
= f2(φ; t0, x0, ẋ0, ẏ0)R

2 + f3(φ; t0, x0, ẋ0, ẏ0)R
3 + O(R4) (31)

with

f2 = A2

B0
, f3 = A3

B0
− A2B1

B2
0

.

Rescaling the radial distance as R = εR′, with ε = R0, equation (31) takes the form:

dR′

dφ
= εf2R

′2 + ε2f3R
′3 + O(ε3R′4). (32)

This equation satisfies the necessary conditions for applying the averaging theorem (e.g.,
Verhulst 1993). This implies that there is a near-identity transformation R̄′ = R′ + O(ε) such
that the dynamics in terms of R̄′ is given by

dR̄′

dφ
= ε〈f2〉R̄′2 + ε2〈f3〉R̄′3 + O(ε3R̄′4), (33)

where

〈fi〉 ≡ 1

2π

∫ 2π

0
fi dφ, i = 2, 3.

After some algebra (see appendix) we find that 〈f2〉 = 0 and 〈f3〉 �= 0. Thus, the equation of
the integral curves (back-transformed to non-rescaled variables) reads finally:

dR

dφ
= 〈f3〉R3 + · · · (34)

where 〈f3〉 depends only on t0 both explicitly and through x0, ẋ0, ẏ0. The precise form of 〈f3〉,
found in the appendix, reads

〈f3〉 =
(

1 + b2cx4
0

4bc1/2x4
0 sin(1 + c)t0

) (
x0ẋ0 +

ẋ0ẏ0(b
2cx4

0 − 1)

bc1/2 sin(1 + c)t0
− x2

0

(
ẋ2

0 − ẏ2
0

)
cot(1 + c)t0

)
.

(35)

Equation (34) admits the solution

R(φ) = R0√
1 − 2R2

0〈f3〉(φ − φ0)

, (36)

which is a spiral terminating at R = 0, i.e., at the nodal point, when φ → ∞ (if 〈f3〉 < 0), or
φ → −∞ (if 〈f3〉 > 0). Comparing this to the actual sense of rotation, given by the sign of
sin((1 + c)t0, we can decide whether, as t increases, the orbits along the spiral recede from or
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approach to the nodal point. The sense of rotation changes at times t0 when sin(1 + c)t0 = 0,
i.e., x0 = 0 and y0 = ∞. On the other hand, the sign of 〈f3〉 changes at times t0 when

x0ẋ0 +
ẋ0ẏ0

(
b2cx4

0 − 1
)

bc1/2 sin(1 + c)t0
− x2

0

(
ẋ2

0 − ẏ2
0

)
cot(1 + c)t0 = 0.

Close to such a time a Hopf bifurcation takes place that is connected to a change of the
character of the nodal point from attractor to repellor, or vice versa. This phenomenon is
analyzed in subsection 4.2 below.

Equation (36) is valid only very close to the nodal point. In order to find the form of the
phase flow at larger distances from the nodal point, we look for stationary points of the flow
(25). The stationary points are given by non-zero solutions (u0, v0) of the system of equations
du/dt = dv/dt = 0. Assuming (u0, v0) small, and keeping terms up to second degree in
u0, v0 in equations (25), we find the solution

v0 �
(

ẋ0

ẏ0

)(
au2

0 sin ct0

sin(1 + c)t0
− u0

)
which, after replacement in the first of equations (25), with du/dt = dv/dt = 0, yields

u0 � K(t0)

L(t0, x0, ẋ0, ẏ0)
, v0 �

(
ẋ0

ẏ0

) (
au2

0 sin ct0

sin(1 + c)t0
− u0

)
(37)

where

K = bc1/2 sin(1 + c)t0

and

L =
(

2ẋ0bc1/2 cos(1 + c)t0 +
ẏ0

x2
0

+
b2cx2

0 ẋ2
0

ẏ0

)
+ abc1/2 sin ct0.

The stationary point (u0, v0) is a saddle (hereafter called ‘X-point’), with one positive and one
negative real eigenvalues. The reality of eigenvalues follows immediately by noticing that the
variational matrix of (25) is symmetric by virtue of the fact that the equations of motion are
given by the grad ∇u,vS

′ with S ′ = S − ẋ0u − ẏ0v, with S(u, v, t) equal to the phase of the
wavefunction ψ = ReiS . Thus, the off-diagonal elements of the variational matrix are equal,
namely,

∂

∂v

du

dt
= ∂2S ′

∂v∂u
= ∂2S ′

∂u∂v
= ∂

∂u

dv

dt

i.e., the variational matrix is symmetric and its eigenvalues are real. Furthermore, setting
a11 = ∂(du/dt)/∂u, a12 = ∂(du/dt)/∂v, a21 = ∂(dv/dt)/∂u, a22 = ∂(dv/dt)/∂v, the
characteristic equation is given by

λ2 − (a11 + a22)λ + (a11a22 − a21a12) = 0.

To the lowest approximation we find

a11 = bc1/2v sin(1 + c)t0

G2

∂G

∂u
+ · · · , a22 = −bc1/2u sin(1 + c)t0

G2

∂G

∂v
+ · · · ,

a12 = a21 = 1

2

bc1/2v sin(1 + c)t0

G2

(
v
∂G

∂v
− u

∂G

∂u

)
+ · · ·

Thus the roots of the characteristic equation satisfy

λ1λ2 = −b2c sin2(1 + c)t0

4G4

(
v
∂G

∂v
+ u

∂G

∂u

)2

+ · · · (38)
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Figure 6. The nodal point—X-point complex on the (u, v) plane, in the adiabatic approximation
when t0 = 10 and a = b = 1, c = √

2/2.

and if we replace u, v in (38) by the root u0, v0, with u0, v0 sufficiently small, the product
of the eigenvalues is negative. This means that one eigenvalue is positive and the other is
negative (except for degenerate cases in which one eigenvalue is zero).

A further conclusion stems by noticing that, if the X-point has a distance d0 =
√

u2
0 + v2

0
from the nodal point, implying that both u0 and v0 are of order O(d0), then all the entries aij

of the variational matrix are of order O
(
1
/
d2

0

)
. It follows that both eigenvalues satisfy

|λi | = O

(
1

d2
0

)
, i = 1, 2. (39)

This conclusion is important because it implies that while, as we will see in the next subsection,
chaos is introduced mainly at the approach of the orbits near an X-point, the contribution of the
latter to the positive value of the Lyapunov characteristic exponent of an orbit is determined
by the measure of the X-point’s positive eigenvalue λ, which, on its turn, is large when the
X-point is close to the nodal point, i.e., when d0 in equation (39) is small. This means that the
nodal points influence chaos rather indirectly, that is, the chaotic behavior is actually due to
the X-points, but the effectiveness of the latter depend on their closeness to the nodal points.
Note that the X-point can approach arbitrarily close to the nodal point, since the two points
collide whenever K = 0, i.e., sin(1+c)t0 = 0. This happens whenever the nodal point reaches
infinity from either side of the y-axis. In general, the distance d0 is small when |y0| is large.

Figure 6 shows how do the spirals emanating from the nodal point connect to the
invariant manifolds emanating from the X-point in the adiabatic approximation. This figure
is a numerical calculation of all the integral curves emanating from the X-point, when
a = b = 1, c = √

2/2 and t0 = 10. The X-point is found numerically up to 12 digits
by looking for roots of equations (25) close to the nodal point by a Newton–Raphson routine.
The numerical solution (u0, v0) is then inserted in the expressions for the matrix elements
aij , i = 1, 2, j = 1, 2, yielding the eigenvalues and eigenvectors of the variational matrix at
(u0, v0). Then, we give initial conditions for u, v on both semi-lines (with respect to (u0, v0))
determined by the directions of the two eigenvectors, at a distance 10−4 from the X-point.
Finally, we integrate numerically the differential equation:

du

dv
= fuv(u, v, t0) (40)
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(a) (b)

(c)

Figure 7. (a) Nodal lines, (b) X-point lines and (c) the positive eigenvalue of the X-point versus
the distance d0 of the X-point from the nodal point, when a = b = 1, c = √

2/2.

found by dividing the two equations of (25), for each of the four different above sets of initial
conditions. This yields numerically the two branches of the stable and unstable manifolds of
the X-point. Clearly, since all the spirals terminating at the nodal point are described in the
same sense, only one of these four branches can be connected to a spiral terminating at the
nodal point. This branch can always be identified by comparing the senses of description of
the manifolds and of the spiral. In particular, one of the asymptotic spirals of the nodal point
is joined to one branch of the unstable manifold emanating from the X-point, if the nodal
point is an attractor, or to the stable manifold, if the nodal point is a repellor. The set of all
the integral curves of the flow in the neighborhood of the nodal point and X-point is hereafter
called the ‘nodal point—X-point complex’.

Figure 7 shows a comparison of the spatial distribution of the nodal points (figure 7(a))
and of the respective X-points (figure 7(b)), on the plane (x, y) when a = b = 1, c = √

2/2
and t0 is in the interval 0 � t0 � 1000. The nodal lines and the X-point lines form similar
patterns. In particular, similarly to the nodal points (section 2), the X-points avoid a central
region of the plane (x, y) in which the majority of orbits turn to be regular (subsection 4.3).
Figure 7(c) shows the modulus of the positive eigenvalue of the X-point as a function of the
distance d0 of the X-point from the nodal point. We find numerically a power-law scaling
λ ∝ 1/dp with p � 1.5, i.e., less steep than the theoretical scaling given by equation (39).
From this figure, as well as from figure 6, in which the distance of the X-point from the nodal
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(a) (b)

Figure 8. (a) Chaotic orbit with initial conditions x(0) = y(0) = −1.1, and a = b = 1, c = √
2/2.

The orbit intersects the nodal lines of the left semiplane of (x, y). (b) The ‘finite time’ Lyapunov
characteristic number χ(t) for the same orbit. The limiting value is close to LCN � 0.03.

point is about d0 = 0.9, we deduce that the results obtained by the previous perturbative
analysis are essentially valid not only at very small distances from the nodal point but also at
relatively large distances (of order 10−1). At any rate, we always find that the stationary points
of the vector field (25), as determined numerically, induce a similar phase-space structure as
in figure 6, i.e., this structure is general in the model considered.

4.2. The exponential sensitivity of the orbits

In order to understand how does the approach of an orbit to the nodal point—X-point
complex introduce exponential sensitivity of the orbits to the initial conditions, we consider
in detail the successive encounters of two nearby orbits, with initial separation 10−4, with
this complex, which take place at snapshots at which the orbits pass close to the complex.
To this end, we consider the orbit of figure 8(a) (initial conditions x1(0) = y1(0) = −1.1
and a = b = 1, c = √

2/2) which has a number of consecutive encounters with the nodal
point—X-point complex. This orbit is chaotic, as seen from the calculation of the ‘finite time
Lyapunov characteristic number’

χ(t) = 1

t
ln

|ξ(t)|
|ξ(0)| , (41)

where ξ(t) ≡ (dx(t), dy(t)) is the deviation vector associated with the orbit (x1(t), y1(t)),
which is found by integrating the variational equations of motion together with the original
equations of motion. The limit limt→∞ χ(t) yields the usual Lyapunov characteristic number.
Numerically we find (figure 8(b)) that this limit is close to LCN � 3 × 10−2. We then
consider in detail the growth of deviations from this orbit by calculating also a nearby orbit
(x2(t), y2(t)) with initial conditions x2(0) = x1(0) + 10−4, y2(0) = y1(0).

Figure 9(a) shows the growth in time of the distance �S(t) = ((x1(t)−x2(t))
2 + (y1(t)−

y2(t))
2)1/2 between the two nearby orbits. Clearly, the distance grows in general with time,

but the growth takes place by rather abrupt steps. That is, while the distance has in general
large fluctuations, there are particular times when the distance �S suddenly grows by jumps
of about one order of magnitude (or more). Thus, the initial distance �S = 10−4 becomes of
order 10−3 at a time t � 25, then of order 10−2 at t � 90, and finally of order 10−1 (reaching
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(a) (b)

Figure 9. (a) The separation �S of two nearby orbits as a function of the time t (a = b = 1, c =√
2/2 and initial conditions x1(0) = −1.1, x2(0) = x1(0) + 10−4, y1(0) = y2(0) = −1.1). (b)

A detail of (a) in the time interval 160 � t � 180. The line with thick dots gives �S. The solid
and dashed lines show the distances d(t) and ε(t) of the orbit (x1(t), y1(t)) from the instantaneous
locations of the X-point and of the nodal point respectively, when the latter are smaller than 1.

even unity) at about t � 170. After this time the distance �S can no longer be considered as
small, that is, the orbits are no longer nearby.

Figure 9(b) is a close up to the third of the above-described jumps, focusing on the time
interval 160 � t � 180. From this figure it is clear that there are three encounters of the
orbit with the nodal point—X-point complex taking place in the considered time interval. In
encounter (I), the minimum distance of the orbit (1) (≡(x1(t), y1(t)) from the nodal point is
εmin � 0.4, and the minimum distance from the X-point is even smaller (dmin � 0.1). In
contrast, in the next encounter (II), the minimum distance from the X-point is rather large
(dmin � 0.9) while the minimum distance from the nodal point is about the same as in case
(I). Finally, in case (III) the minimum distance from the X-point is small (dmin � 0.2) while
the minimum distance from the nodal point is now large (εmin � 1). Clearly, the growth of
the distance �S mostly takes place during the encounters (I) and (III) in which the orbits pass
closer to the X-point than to the nodal point. On the other hand, in the case of encounter
(II), the growth is smaller while the orbit approaches closer the nodal point than the X-point.
We conclude that large variations of �S are in general associated with approaches of the orbits
to the X-point rather than to the nodal point.

Figure 10 shows in detail how does the separation of the orbits take place during the
encounter event (III). The two nearby orbits are shown as dashed curves, in the time interval
175 � t � 176.5, in the moving frame of reference centered at the nodal point. The different
frames correspond to different time snapshots, and the particular positions of the orbital
points (1) ≡ (u1, v1) = (x1 − x0, y1 − y0), (2) ≡ (u2, v2) = (x2 − x0, y2 − y0) at the given
snapshot are marked with thick dots. Finally, the instantaneous stable and unstable asymptotic
manifolds emanating from the X-point (in the adiabatic approximation) are plotted for the
time corresponding to each frame.

We note that the X-point changes position relative to the nodal point, which in these
frames is always centered at (u, v) = (0, 0). In fact, as already mentioned, the two points
collide whenever sin(1 + c)t = 0 (and then y0 = ±∞). There are two consecutive collisions
at t = 174.829 and t = 176.669. The time t = 175.2 (figure 10(a)) is close to the first of
the above two collision times and, consequently, the X-point at t = 175.2 is very close to the
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(a) (b)

(c) (d )

(e) ( f )

Figure 10. The encounter event (III) of figure 9(b) viewed in detail in the plane (u, v). The orbits
(1) and (2), in the time interval 175 � t � 176.5, are shown by dashed lines, while the thick dots
indicate the positions of the orbital points on these lines at the times (a) t = 175.2, (b) t = 175.5,
(c) t = 175.7, (d ) t = 175.8, (e) t = 176, and (f) t = 176.3. The invariant manifolds of the
instantaneous X-point—nodal point complex are plotted for the same times. The main deflection
of the orbits, takes place within the time interval 175.7 � t � 175.8.
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(a) (b)

Figure 11. (a) The nodal point coordinate y0(t) in the time interval 175 � t � 176.5. (b) The
value of 〈f3〉(t0) in the time interval 175 � t0 � 176.5. There are three moments in this interval
at which 〈f3〉 = 0. These correspond to changes in the topological structure of the X-point, nodal
point complex.

nodal point. Then, the X-point moves to the left up to about t = 175.8 (figures 10(b)–(d )),
and then it returns to the right approaching again the nodal point (figures 10(e), ( f )). The time
t = 176.3 is close to the second collision time (t = 176.669), thus the X-point in figure 10( f )
comes again very close to the nodal point.

Now, at the time t = 175.2 the orbits have a separation of about �S = 0.15 (figure 10(a)).
At this time snapshot the orbits move in a nearly parallel way, and their distances from both
the nodal point and X-point are rather large (of order unity). The orbits move downwards in
about the same direction as indicated by the arrows of the invariant manifolds of the X-point
(in the rest frame (x, y) this means that the nodal point approaches the orbital points from
y = −∞, see also figure 11(a)). Furthermore, as the X-point itself moves from right to left,
both orbits approach to it (figure 10(b), t = 175.5).

The crucial phenomenon occurs near t = 175.7 (figure 10(c)). Around this time, the X-
point crosses a segment joining the orbital points (1) and (2). The two points have approached
the moving X-point at a distance smaller than 0.2, but they are on opposite branches of the
unstable manifold. Thus, point (1) moves downwards following one branch of the unstable
manifold of the X-point, while point (2) moves upwards following the other branch of the
same manifold. This causes a abrupt growth of the distance of the two points by a factor � 3.

An important change in the topological structure of the invariant manifolds, that influences
the orbits, takes place between t = 175.7 (figure 10(c)) and t = 175.8 (figure 10(d )). Namely,
at t = 175.7 (figure 10(c)) the spiral terminating at the nodal point is connected to one branch
of the stable manifold of the X-point, while at t = 175.8 (figure 10(d )) it is connected to
one branch of the unstable manifold of the X-point. This transition takes place via a Hopf
bifurcation which is described in detail below. At any rate, at t = 175.8 (figure 10(d )) the
X-point has moved to the left, far from the nodal point, and orbit (1) is close to the stable
manifold of the X-point. Thus, orbit (1) is deflected to the left, while orbit (2) continues slowly
upwards.

Finally, a little later (t = 176, figure 10(e)), the X-point returns close to the nodal point
so that point (2) comes very close to the unstable manifold of the X-point. This causes a
deflection of orbit (2) to the left, while orbit (1), although far from the X-point (nodal point)
complex, moves also to the left, following the general direction of motion indicated by the
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unstable manifold of the X-point. Finally, at t = 176.3 (figure 10( f )) both orbital points
are far from the X-point—nodal point complex, but they are relatively close to the unstable
manifold of the X-point in a downward direction. From there on both orbits move in a nearly
parallel way until the next encounter event which occurs much later. The overall growth of
the distance of the two orbits by a factor of 3 in a time �t = 176.3−175.2 = 1.1 corresponds
to an exponential growth rate ln 3/1.1 � 1 in this time interval. This is much larger than the
average exponential growth rate (=LCN � 0.03) for the same orbit within a much longer time
interval. This fact justifies the statement that the growth of �S is by abrupt jumps, which take
place during local (in space and time) encounters with the nodal point—X-point complex.

The topological transition in the phase space structure taking place between t = 175.7
(figure 10(c)) and t = 175.8 (figure 10(d )) is due to a Hopf bifurcation taking place between
these two times as a result of the fact that the value of 〈f3〉 (equation (35)) changes sign
(figure 11(b)), while the sign of dφ/dt remains constant (because there is no change in the
sign of sin(1 + c)t , i.e., no transition of y0 to infinity, in the same interval, figure 11(a)). By
virtue of equation (36), the change of the sign of 〈f3〉 at a time between t0 = 175.7 and
t0 = 175.8 implies that the nodal point turns from repellor to attractor. The precise time when
this happens depends on higher order terms in the development of the equations of motion
around the nodal point, but it is nevertheless close to the time when the term depending on 〈f3〉
becomes equal to zero. Numerically, we find the bifurcation to take place near t0 = 175.75.
Before this time (e.g. at t0 = 175.7, figure 12(a)) the nodal point is a repellor, and a spiral
emanating from it joins the stable manifold of the X-point. On the other hand, a little after
this time (t0 = 175.76, figure 12(b)), the nodal point has become an attractor, while the
stability character of the X-point does not change appreciably. Thus, between the nodal point
and X-point there is now a limit circle which acts as a repellor, i.e., the orbits on both sides
of the circle move away from it on spirals either terminating at the nodal point or moving
toward the X-point. In the latter case a spiral either joins the stable manifold terminating at
the X-point or continues downward, away from the X-point, in the channel formed between
the two branches of the unstable manifold of the X-point (figure 12(b)). As t0 increases the
limit circle moves outwards approaching the invariant manifolds of the X-point. At a critical
time t0 = 175.775 0938 (figure 12(c)) the limit circle coincides with the invariant manifolds
of the X-point. At still larger times (t = 175.78, figure 12(d )), the limit circle disappears and
one branch of the unstable manifold of the X-point continues now as a spiral terminating at
the nodal point.

Figure 13 shows how does the effect of a close encounter of an orbit with the nodal
point—X-point complex show up in the time evolution of the deviations ξ(t) as given by
solving the variational equations of motion together with the equations of motion for one
orbit. The abrupt jumps in the length of the deviation vector �ξ = (dx, dy) ≡ (du, dv)

(figure 13(a)) are associated with passages of the orbit close to the nodal point—X-point
complex. In order to obtain quantitative estimates of the exponential growth of deviations
at successive encounter events, we proceed as follows: the time span of the total run of an
orbit is split in short windows of width �t = 0.1 (the timestep of the numerical integration
is variable and much shorter than this window, i.e., dt � 10−5). In each time window, an
average ‘stretching number’ (Voglis and Contopoulos 1994) is calculated according to

ai = 1

�t
ln

∣∣∣∣ξ(ti + �t)

ξ(ti)

∣∣∣∣ , (42)

where ti = (i − 1) × �t is the initial time of the ith window, and ξ(t) is the length of
the deviation vector �ξ(t) at the time t. This quantity characterizes the local growth rate
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(a) (b)

(c) (d )

Figure 12. The instantaneous flow chart of the X-point—nodal point complex at the times
(a) t0 = 176.7, (b) t = 176.76, (c) t = 176.775 0938, (d ) t = 175.78. A Hopf bifurcation taking
place near the value t = 176.72 (at which 〈f3〉 = 0 in figure 11), leads to the formation of a limit
circle (repellor), shown in (b), which disappears after reaching the separatrix of (c).

of deviations, while the average value of all the stretching numbers yields the ‘finite time
Lyapunov characteristic number’

χ(t) = 1

N�t

N∑
i=1

ln

∣∣∣∣ξ(ti + �t)

ξ(ti)

∣∣∣∣ = 1

t
ln

∣∣∣∣ ξ(t)

ξ(0)

∣∣∣∣ . (43)

(The limit limt→∞ χ(t) defines the Lyapunov characteristic number of the orbit). In the same
time windows we also store the values of the minimum distance of the orbit to the nodal point
εmin, and to the X-point dmin, as well as the minimum distance between the X-point and nodal
point d0,min. These three minimum values are not occurring at precisely the same times within
a given time window, however the width of the window �t = 0.1 itself is small enough so
that the occurrences of the minimum values can be considered as nearly simultaneous.

Figure 13(b) then shows the main result. The distances that an orbit reaches from either the
nodal point or the X-point, for all the 10 000 time windows in a total time span 0 � t � 1000,
are grouped in bins of width δ = 2.5 × 10−2. The abscissa in figure 13(b) gives the median
value of each bin, which is the same for either the distance d from the X-point or ε from the
nodal point. A weighted average value ā of the stretching number is then calculated in each
bin, by summing the values of the stretching numbers which appear during all the passages
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(a) (b)

Figure 13. (a) the growth of the length of the deviation vector ξ(t) for the same orbit (x1(t), y1(t))

as in figure 9(b). The lower solid and dashed lines are the same as in figure 9(b). (b) The mean
stretching number ā as a function of the distance from the X-point ā(d), or from the nodal point
ā(ε), for the same orbit and time up to t = 1000. For each value of d or ε, the value of ā is
calculated by taking the sum of all the stretching numbers (equation (42) with �t = 0.1) occurring
at passages of the orbit at a distance d ± δ/2 from the X-point and ε ± δ/2 from the nodal point
respectively, with δ = 2.5 × 10−2.

of the orbit at distances d ± δ/2 from the X-point, or ε ± δ/2 from the nodal point, and
dividing by the total number of values of the stretching number in the sample. Clearly, when
the stretching numbers are grouped with respect to the various distances d reached from the
X-point, the average stretching number ā(d) is positive for all distances d � 0.25, while
for d > 0.25, ā(d) fluctuates between positive and negative values, showing nevertheless a
preference for positive values. Such a preference reflects the hyperbolic dynamics induced on
the orbits by their approaches to the X-point. That is, the general solution of the variational
equations close to the X-point contains terms growing exponentially and other terms decaying
exponentially. However, the growing terms prevail as the time t increases. Thus, the overall
average stretching number 〈ā〉 after many encounters of an orbit with the X-point turns to be
positive.

On the other hand, when the stretching numbers are grouped with respect to the distance
ε of an orbit from the nodal point, the average stretching number ā(ε) (dashed curve in
figure 13(b)) shows no clear preference toward positive or negative values when ε is small
(ε < 0.25), while a preference toward positive values of ā appears when ε > 0.25. This
agrees with figure 13(a), or figure 9(b), which show that the growth of deviations occurs
mainly during encounters (I) and (III), during which the minimum distance of the orbit from
the X-point is smaller than the distance from the nodal point.

5. Discussion

The role of the nodal points of the wavefunction (sometimes called ‘quantum vortices’) in
determining the main features of the ‘hydrodynamical’ probability flow has been studied in
a number of different quantum systems (see Wyatt (2005) and references therein). Here we
refer only to studies related to our own, i.e., to the appearance of chaos due to nodal points
(quantum vortices).
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Berry (2005) studied the flow lines of a general time-independent complex scalar field
ψ(x, y) and found that they typically spiral in or out of a ‘phase vortex’. He also found the
stationary points of this flow which can be either elliptic or hyperbolic. Berry explicitly
excludes a spiral flow near the vortices of the Schrödinger field because the quantum
mechanical current satisfies ∇ · j = 0. This is precisely what happens in our case if one
considers the flow lines in the rest frame (x, y) rather than a frame moving together with
the nodal points. In the rest frame, the flow integral curves (found by dividing by parts
equations (4)) are given by the differential equation:

dy

dx
= bc1/2x(ax sin ct + sin(1 + c)t)

a sin t + bc1/2y sin(1 + c)t
. (44)

Keeping the time t frozen in the rhs, equation (44) yields the integral curves

a sin ty + bc1/2 sin(1 + c)t
y2

2
− abc1/2 sin ct

x3

3
− bc1/2 sin(1 + c)t

x2

2
= C. (45)

The critical points of (45) are given by the solutions of ∇C = 0. There are two solutions:

(x1, y1) =
(

− sin(1 + c)t

a sin ct
,− a sin t

bc1/2 sin(1 + c)t

)
≡ (x0, y0)

(x2, y2) =
(

0,− a sin t

bc1/2 sin(1 + c)t

)
≡ (0, y0).

(46)

The first critical point (x1, y1) coincides with the nodal point. The eigenvalues of the Hessian
matrix of C at (x0, y0) are given by λ1,2 = ±ibc1/2 sin(1 + c)t ; thus they are imaginary at any
time t, implying that the integral curves of the velocity field in the neighborhood of the nodal
point are approximately ellipses centered at (x0, y0) at any time t except tc = 2kπ/(1 + c)

or tc = (2k + 1)π/(1 + c) with k integer. The difference with respect to the approximation
of equation (36) is that in the moving frame of reference the instantaneous flow lines form
spirals if 〈f3〉 �= 0, i.e., if ẋ0 �= 0 or ẏ0 �= 0, that is the spirals appear (in the moving frame)
only because the velocity of the nodal point is non-zero. Furthermore, in our analysis, the
eigenvalues of the X-point in the nodal point—X-point complex scale as an inverse power of
the distance of the X-point from the nodal point. In contrast, the eigenvalues of the second
critical point (x2, y2) of equations (46) are given by λ1,2 = ±bc1/2 sin(1 + c)t , i.e. they are
bounded by quantities of order a or b. Thus, despite the fact that (x2, y2) represents also a
saddle point in the rest frame of motion in the adiabatic approximation, its influence to the
dynamics is not so important when a and b are of order unity. In fact, this point is always
attached to the y-axis, so that it can only influence the deviation vectors at times when the
orbits come close to this axis. This is at variance with the numerical results showing that
positive stretching numbers are introduced when the orbits approach the nodal point—X-point
complex at arbitrary locations within the plane (x, y).

Wisniacki and Pujals (2005) studied the Bohmian orbits in an example similar to ours,
namely the superposition of three stationary states of the double harmonic oscillator, when,
however, the latter is isotropic (c = 1) and the ratios of the probability amplitudes of the states
|�10〉 and |�11〉 with that of |�00〉 are complex. In the case c = 1 there is only one fundamental
frequency of the time-dependent trigonometric terms of the equations of motions. This allows
one to obtain stroboscopic plots of the orbits, i.e., Poincaré surfaces of section. Wisniacki
et al pointed out that it is the motion of the nodal point which generates chaos. However, their
mechanism of introduction of chaos is different from ours. Namely, in the case of Wisniacki
et al the motion of the nodal point generates a saddle point on the surface of section, but
the surface of section is area preserving, and the transverse intersections between the stable
and unstable invariant manifolds of the saddle point generate homoclinic chaos. The most
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important difference is that their mechanism can be applied only in resonant cases while our
mechanism applies to general non-resonant cases.

A similar example was studied by Makowski et al (2000). Both results correspond to the
case of a complex ratio a/b and c = 1. On the other hand, if c is rational but a/b is real,
all the orbits are periodic and neutrally stable; thus there is no chaos at all (some examples
of seemingly chaotic orbits in a similar model given by Konkel and Makowski (1998), for a
rational value of c, are just due to numerical errors caused by the stiffness of the equations of
motion close to the X-point. In order to obtain the correct orbits, which are periodic and not
chaotic, we had to use a program in Mathematica with an accuracy of 50 digits!).

Falsaperla and Fonte (2003) studied the orbits near nodal lines in a 3D model. In that case
the orbits describe helical motions around the nodal line (called by these authors ‘spirals’)
while the projections of the motion on a z = constant surface are ellipses. These authors
point out that the nodal lines ‘regularize the motion’ in their neighborhood, and only orbits
not following a definite nodal line are ‘intermittent chaotic’. They furthermore find too that
the period of rotation along the helix is of order O(ε2), where ε in this case is the distance
from the nodal line. While a detailed comparison of 2D and 3D models is necessary, our
analysis above shows essentially why the growth of the deviation vectors is intermittent, i.e., it
takes place by abrupt steps whenever an orbit approaches the nodal point—X-point complex.
Furthermore, we also explain why the appearance of chaos is not strictly correlated with very
close approaches to the nodal point (in such cases the orbits simply spiral around the nodal
point), but it occurs mainly when the orbit approaches closely the X-point associated with the
nodal point. This happens even if the latter has a distance from the nodal point which is much
larger than the distance of the orbit from the X-point.

Wu and Sprung (1999) gave plots (their figure 4) of the probability flow, which resemble
our figure 7. However, this resemblance is only due to a ‘phase mixing’ phenomenon taking
place in the rest frame near the nodal point. Namely, because the rotation frequency depends
on the distance from the nodal point as 1/ε2, a fluid element of some thickness approaching
the nodal point forms a number of windings around the nodal point due to the differential
rotation of the orbits included in its area. These windings give the impression of forming a
spiral pattern, which is, however, only apparent, namely the windings are limited by an inner
circle (or ellipse) due to orbits of the fluid element closest to the nodal point (this is different
from our limit circle of figure 12). On the other hand, in earlier works the same authors found
spiral motions around quantum vortices in the rest frame of motion, when the quantum system
is subject to a vector potential in addition to a scalar potential (Wu and Sprung 1994). The
plots shown in that work are similar to ours, although the similarity in the topological structure
of the phase space is due to the presence of an extra term in the equations of motion due to the
vector potential, rather than to the motion of the nodal point.

Finally, Frisk (1997) and Wisniacki et al (2006) noted that the transition to chaos is
enhanced when there are many co-existing vortices influencing the orbits. In that case it is
necessary to consider the connections of the invariant manifolds emanating from the stationary
points of one vortex with those of other vortices and see how this can increase chaos and
transport phenomena in configuration space. This problem is proposed for future study.

6. Conclusions

In summary, the main conclusions of our study are the following:

(a) In a simple quantum system consisting of the superposition of three eigenstates of the
2D harmonic oscillator potential, in which there is one nodal point of the wavefunction
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traveling in the plane (x, y), we proved the existence of domains of this plane which
are free of nodal points. Bohmian orbits in these domains, as well as orbits slightly
overlapping with the nodal lines, are regular.

(b) In the central domain devoid of nodal lines the equations of motion admit expansions
in powers of the probability amplitudes of the eigenstates, yielding the trajectories
as double Fourier series in the fundamental frequencies of the system. These series
represent theoretical orbits which are, by definition, regular. We show the agreement
of the theoretical and numerical orbits in this domain for sufficiently small values of
the probability amplitudes and sufficiently high order of the expansions, and use this to
explain the morphological characteristics of the regular orbits.

(c) Close to the nodal points, we use different expansions, in powers of the distance from
the nodal point, in order to unravel the dynamics. The angular frequency of motion in
a ε-neighborhood of the nodal point is of order O(1/ε2). This justifies the use of the
adiabatic approximation. In the fixed frame (x, y) the flow lines close to the nodal point
are ellipses. However, in a moving frame attached to the nodal point, the flow lines are
spirals terminating at the nodal point. The temporary sense of description of the spirals by
the orbits is unique, i.e., at a given time the nodal point is either an attractor or a repellor.
Furthermore, at a finite distance from the nodal point there is a saddle stationary point of
the flow with one asymptotic manifold joining the spiral and the other three extending to
infinity.

(d) The eigenvalues of the X-point scale as 1
/
d

p

0 where d0 is the distance of the X-point
from the nodal point and p � 2. Furthermore, the distance d0 can be arbitrarily small,
i.e., there are collisions of the X- and nodal points. We show that the orbits approaching
close to the X-point exhibit exponential growth of their deviations, i.e., they are chaotic.
In all numerical examples we find that chaos is associated with the approach of the orbits
to the X-point, which, however, is only guaranteed when we have a moving nodal point.
Furthermore the chaotic influence of the X-point on the orbits is strongest when the X-
point is closest to the nodal point. Thus, the nodal point indirectly influences the transition
of Bohm’s trajectories from order to chaos via the above mechanism.

Appendix. Calculation of 〈f3〉

The precise form of equation (30) reads

dR

dφ
= −AR2 − ẋ0G cos φ − ẏ0G sin φ

B − CR − ẏ0
G
R

cos φ + ẋ0
G
R

sin φ
, (A.1)

where

A = abc1/2 cos2 φ sin φ sin ct, B = bc1/2 sin(1 + c)t, C = abc1/2 cos3 φ sin ct

and G = g2R
2 + g3R

3 + g4R
4 with

g2 = cos2 φ

x2
0

− 2bc1/2 sin φ cos φ cos(1 + c)t + b2cx2
0 sin2 φ

g3 = −2bc1/2

x0
cos(1 + c)t cos2 φ sin φ + 2b2cx0 cos φ sin2 φ

g4 = b2c cos2 φ sin2 φ.
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Expanding equation (A.1) in ascending powers of R we find

dR

dφ
= (−AR2 − ẋ0g2 cos φR2 − ẋ0g3 cos φR3 − ẏ0g2 sin φR2 − ẏ0g3 sin φR3)

× 1

B

(
1 +

c

B
R + ẏ0

g2

B
cos φR − ẋ0

g2

B
sin φR

)
+ · · · (A.2)

Averaging equation (A.2) we find

dR̄

dφ
= 1

2π

∫ 2π

0

dR

dφ
dφ = 〈f2〉R2 + 〈f3〉R3 + · · · (A.3)

where

f2 = 1

B
(−A − ẋ0g2 cos φ − ẏ0g2 sin φ)

f3 = 1

B
(−A − ẋ0g2 cos φ − ẏ0g2 sin φ) ×

(
c

B
+ ẏ0

g2

B
cos φ − ẋ0

g2

B
sin φ

)

+
1

B
(−ẋ0g3 cos φ − ẏ0g3 sin φ).

Collecting terms of the form

1

2π

∫ 2π

0
cosn φ sinm φ dφ, m, n even

we find that 〈f2〉 = 0, while

〈f3〉 = 1

16b2c sin2(1 + c)t0

(
4abc1/2 sin ct

(
− ẋ0

x2
0

+ b2c cos(1 + c)t ẏ0

)

+ 4ẋ0ẏ0

(
b4c2x4

0 − 1

x4
0

)
− 4bc1/2 cos(1 + c)t

(
ẋ2

0 − ẏ2
0

) (
1

x2
0

+ b2cx2
0

))

+
bc1/2

4bc1/2 sin(1 + c)t0

(
ẏ0 cos(1 + c)t0

x0
− bc1/2x0ẋ0

)
, (A.4)

which after some simplification yields equation (35).
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